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1. INTRODUCTION AND SUMMARY 

Most of the literature on randomized 
response (RR) techniques has been concerned with 
the study of a single sensitive attribute. How- 
ever, very often, social researchers are inter- 
ested in studying several sensitive attributes 
together. Therefore it is necessary to develop 
privacy preserving techniques which would allow 
statistical inference to be made concerning mar- 
ginal as well as joint distributions of the 
attributes. Only recently attention of the 

survey statisticians has been focussed on this 
particular problem. 

In his dissertation, Barksdale (1971) pro- 
posed and analyzed some RR techniques for inves- 
tigating two sensitive dichotomous attributes. 
In particular, he considered a repeated (for 

each attribute) application of the Warner's 
original technique (see also Clickner and 
Iglewicz 1976 and Drane 1976), a repeated appli- 
cation of the Simmons' unrelated question tech- 
nique (Greenberg et al. 1969) and a third tech- 
nique which is as follows: The two statements 
concerning the two sensitive attributes are 
phrased so that a "Yes" response to one of the 
two statements would be nonstigmatizing. (E.g., 
the two statements might be "I have never smoked 
marijuana" and "I am an alcoholic. ") The inter- 
viewer presents both the statements to the 
respondent on two occasions. On each occasion, 
the respondent picks one of the two statements at 
random, unknown to the interviewer, but according 
to some known probability (different for each 
occasion) and responds to it. This procedure 
maintains the privacy of the respondent and yet 
allows the researcher to compute the estimates of 

the marginal and bivariate probabilities of the 
attributes from the observed frequencies of "Yes - 
Yes," "Yes-No," "No- Yes," and "No -No" responses. 

In a survey dealing with t 2 sensitive 
attributes, a repeated application of any RR 
technique for a single attribute, such as the 
Warner's technique, involves t trials per respon- 
dent. If t is large then this procedure becomes 
tedious, costly and leads to degradation in coop- 
eration on the part of respondents. Also the 
estimating equations involve all the joint prob- 
abilities which the researcher is not often 
interested in. On the other hand, the technique 
described in the previous paragraph can be easily 

extended to t > 2 case with the number of trials 
per respondent restricted to r t if the 

researcher's interest lies in only up to 

r- variate joint probabilities. Quite often, 

r 2 will suffice for the purposes of the 

research. 
In Section 2 of the present paper we extend 

the above technique (henceforth referred to as 

the multiple RR trials technique or the 
M- technique) to the case of t > 2 sensitive 

dichotomous attributes. But we restrict to only 

r 2 trials per respondent to keep the algebra 
simple and also since r = 2 appears to be the 
most useful case from a practical viewpoint. The 

estimates derived by Barksdale do not satisfy the 
natural restrictions on the marginal and bivari- 
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ate probabilities; also no procedure for testing 
independence between the attributes is provided 
in his work. We provide a correct statistical 
analysis of the extended technique and also give 
a test of pairwise independence for any set of 
pairs of attributes. 

In Section 3 we carry out a numerical com- 
parison of the multiple RR trials technique with 
some competing techniques in terms of the trace 
of the variance -covariance matrix of the esti- 
mator vector for the marginal and joint prob- 
abilities of the attributes. To make this a 
just comparison, it is necessary to keep fixed 
some measure of privacy afforded to the respon- 
dent. In Section 3.2 such a measure is defined 
which extends to t > 1, the corresponding notion 
for t = 1 due to Leysieffer and Warner (1976). 
No clear winner is indicated by the numerical 
comparisons which are made for the t = 2 case. 
But if the proportions in the population possess- 
ing the sensitive attributes are small,(whích is 
often the case) and the respondent jeopardy 
levels are moderate, i.e., not too high or low 
(which is also often the case) then the multiple 
RR trials technique appears to dominate. This 

technique has one drawback however, which is that 
it fails to attain certain low levels of respon- 
dent jeopardy. Still, in view of the practical 
advantages pointed out earlier, the multiple RR 
trials technique definitely merits a considera- 
tion in any survey dealing with several sensitive 
attributes. 

2. MULTIPLE RR TRIALS TECHNIQUE 

2.1 Notation and Description of Technique: Con- 
sider t 2 dichotomous attributes A1, Az, 
AL; we shall assume that all the attributes are 
sensitive but obviously that need not be so. Let 

denote the unknown proportion of indi- ii...i 
viduals in the target population which possesses 
the attributes A (1 < < t, 

1 u t). The researcher's interest lies in 

making statistical inference (estimation and 

hypothesis testing) concerning the 0's. 
For employing the multiple RR trials techni- 

que, the statements must be phrased so that a 

"Yes" response to some statements would be non- 

stigmatizing whereas a "No" response to the 

others would be so. Without loss of generality, 

we shall assume that the first s < t statements 
are phrased "I possess the attribute A1" 

(1 i s), a "No" response to each one of which 

would be nonstigmatizing; the remaining t - s 

statements are phrased "I do not possess the 

attribute Ai" (s + 1 i t), a "Yes" response 

to each one of which would be so. An appropri- 
ate choice of s would be t /2. Let be 

defined in the same manner as 0. but with 

respect to the modified attributes B1 which are 

either original Ai(1 i s) or the complements 

of the Ai(s + 1 i t). It is clear that the 

0's can be obtained from the rr's and vice versa 

and therefore we shall consider the equivalent 

problem of estimation of the rr's. 



As remarked in the previous section we shall 
assume that the researcher is interested only in 

the marginal and bivariate probabilities, i.e., 

(1 i t) and (1 i < j t), respec- 
tively. Thus there are t(t + 1)/2 unknown para- 
meters to be estimated and only 2 trials may be 
performed per respondent. We now describe the 

technique. 
A total sample of n individuals (which may 

be assumed to be a simple random sample drawn 
with replacement) is divided into b 1 subsam- 
ples; the value of b will be specified in the 
following section. Let , n2, ..., be the 
subsample sizes with n,. = n. 

Each individual is presented all the t 

statements and asked to respond to one statement 
picked at random according to some randomizing 
device, but not reveal his choice of the state- 
ment to the interviewer. This procedure is 

repeated with another randomizing device and 
both the responses are recorded. Let 

denote the (known) probability that an indi- 
vidual drawn from the hth subsample picks, on the 

2th trial, the ith statement (1 i t); 

obviously we have = 1 for 1 h b 

and = 1, 2. 

2.2 Estimation of the n's: Suppose that the 

responses are coded so that a score of -1 is 

assigned to a "Yes" response on the Lth trial and 
a score of 0 is assigned to a "No" response. 
Then the total score, say v, completely identi- 
fies the individual's response. E.g., v = 3 
corresponds to a "Yes -Yes" response, v = 2 corre- 
sponds to a "No -Yes) response etc. Let 

denote the probability of obtaining a score of v 

for an individual drawn from the hth subsample. 
Then we have the following equations. 

= 1)(1 - 
1=1 

= 
h2 

2) 
t=1 1=1+1 

=1 

1=1 

Xh2 -Xh3 

-2,1 = PIT), 

= P (2.3) -1,1 = 

and for i < j t if k = it - i(i + 1)/2 + j 
then we have 

h-2,k = Ph)Phi)) 

= ,k (2.4) 

To find b, the total number of subsamples, 
necessary to estimate the t marginal probabili- 
ties and (2) bivariate probabilities NO, }, 

consider an extreme case (and a most favorable 
one from the statistician's viewpoint) where the 
P- values can be chosen either equal to zero or 
one (which corresponds to the "dir response" 
case). By choosing = 1 and = 1 for 
different pairs (i, for different subsamples 
h, it is easy to see that all the parameters 
can be estimated using (2) subsamples and no less 
number of subsamples would do. An extension of 
this argument shows that, even for general 
P- values, to estimate all the parameters, at 

least (2) subsamples are required. In other 

words, by suitably choosing the P's, the matrix 
defined in (2.3) and (2.4) can be made to have 

a full column rank only if b (2). Let us then 
assume that b (2) and that R is a full column 
rank matrix. 

We propose to obtain the maximum likelihood 
estimator (MLE) of from the observed data {nhvj 
where nhv = the number of individuals from the 
hth subsample having a score of v(0 v 3); 

v =0nhv 
= h b). The usual method of 

first obtaining the unrestricted MLE (UMLE) of X 

(i.e., the UMLE of 
Xhv 

for 0 v 3, 

1 h b) and then obtaining the UMLE of by 
"solving" (2.2) is not applicable for two reasons 
in the present context: 

1. Matrix R can be chosen to be a square full 
rank matrix only for t = 2. For t > 2, in 

general, there is no unique solution in to 

(2.2). 

2. Even in the case where the of can be 

(2.1) obtained by the above method, the resulting 
estimator may not satisfy the natural restric- 
tions on the namely that 

for 1 h b. In the vector notation, if 

= x12° x13, .., Xb Xb2, )1 and 
= (71, 713, then 

(2.1) can be expressed compactly as 

(2.2) 

where the elements of the matrix R are given by 
the following equations: For 1 h b and 

i t we have, 
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0 s 1 Vi and, 

(2.5) 

max(0, + - 1) min(rrí , ni) j) . 

From a theoretical viewpoint, the UMLE of may 
even be inadmissible as shown in the case of the 
Warner's technique for a single attribute by 
Singh (1976). 

Therefore we must find the restricted MLE 
(RMLE) of say P. We propose to obtain 
directly maximizing the likelihood function 

L a (2.6) 

h =1 v =0 



subject to (2.5). In (2.6) the Xhv are given in 

terms of by (2.1). Denote the restricted maxi- 

mum of L by L *. The constraint set (2.5) is 

linear in the rr's and the objective function 

log. L can be easily checked to be concave in the 

The resulting nonlinear programming (NLP) 

problem is thus well structured and can be solved 

quite economically on a computer using one of the 

commonly available algorithms. 

2.3 Properties of n: The is biased in 

small samples but is asymptotically (as Yh) 

unbiased. The asymptotic variance -covariance 

matrix of (which is also the exact variance- 

covariance matrix of the UMLE of n) is given by 

the inverse of the information matrix J; we give 

below an expression for the elements of the upper 

left t x t principal submatrix of J: For 1 i, 

j t we have 

1 
= - ( ) 

Xhv ai 
The remaining elements of J, which would involve 

terms, can be obtained in an analogous 
manner. The various derivatives can be evaluated 
easily using (2.1). 

For t = 2, the expressions for the asymp- 
totic variances and covariances can be written 
down explicitly and they may be found in Barks- 
dale (1971). Large sample hypothesis testing 
concerning the rr's can be carried out using the 
expressions for the variances and covariances 
with X replaced by its RMLE R n. 

2.4 Test of Independence: First we note that 
testing pairwise independence between the origi- 
nal attributes, say Al and A is equivalent to 
testing pairwise independence between the corre- 
sponding modified attributes. In fact, if 

denotes the correlation between A! and and 
denotes the correlation between the corre- 

sponding modified attributes then = 
for < t. Therefore we shall consider 
the problem of testing independence between pairs 
of modified attributes. 

Suppose that it is desired to test the hypo- 
thesis for all pairs (i, j) in a 

certain set We can use the generalized like- 
lihood ratio method to test this hypothesis as 
follows: Compute the maximum of the likelihood 
function L in (2.6) subject to the following con- 
straints on the rr's 

di, 

1) 
(2.7) 

j) = 

Denote the corresponding maximum of L by I. 
Then under asymptotically -2 /L *) has 
a chi - square distribution with f degrees of free- 
dom (d.f.), where f is the number of pairs in set 
.7. 
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2.5 Choice of the P's: For fixed h and 1,, the 

should be chosen as different from lit as 
possible. In fact, for large t, the length of 

the questionnaires can be cut down by choosing 

= 0 for different sets of statements for 
different subsamples. Assuming that the 
researcher is equally interested in all the 

attributes, it seems that, the P's should be 

chosen symmetrically as far as possible. For 
t = 2, such a symmetric choice is provided by 

= 1; subject to this restriction, 

and may be chosen as far away from 
1/2 as the researcher dares. Obviously the 
actual choice will depend on the average educa- 

tional and social sophistication of the popula- 
tion. A pilot survey should be carried out to 
test different randomizing devices (different 
P's) as well as the questionnaire itself. 

3. COMPARISON WITH SOME COMPETING TECHNIQUES 

3.1 Brief Description of the Competing Techni- 
ques: We shall consider two techniques in com- 
petition with the M- technique developed above: 
a repeated application of the Warner's techni- 
que (W- technique) and a repeated application of 

the Simmons' unrelated question technique (S- 
technique). 

In the W- technique t trials are performed 
per respondent. On the ith trial the interviewer 
presents the respondent with a pair of state- 

ments: "I possess the attribute Ai" and "I do 

not possess the attribute Ai." The respondent 

picks one of the two statements at random accord- 
ing to known probabilities Pi and 
1 - 1/2) respectively, and without 

revealing his choice to the interviewer, responds 

to it. This procedure is repeated for 

i = 1, 2, ..., t. Suppose that the responses are 

coded so that a score of 21 is assigned to a 

"Yes" response on the ith trial and a score of 0 

is assigned to a "No" response (1 i and 

let y denote the total score. Then 

v(0 21 - 1) completely identifies the 
individual's response. The n's can then be esti- 

mated from the observed frequencies fn.) where 
= the number of individuals in the sample 

having a score of v; 7: n n. 

In the S-technique also t trials are per- 
formed per respondent. On the ith trial the 

interviewer presents the respondent with a pair 
of statements "I possess the attribute At" and 

"I possess the attribute Yt" where is some 

unrelated and innocuous attribute. The respon- 

dent picks one of the two statements at random 

according to known probabilities P1 and 1 - Pt 

respectively, and without revealing his choice 

to the interviewer, responds to it. This pro- 

cedure is repeated for i 1, 2, ..., t. Again 

using the same scoring system as in the previous 

paragraph, the rr's can be estimated from the 

observed frequencies if the fraction in the 

population possessing the attribute say 131, 

is known for 1 i t. 

3.2 A Measure of Respondent Jeopardy: Recently; 
Leysieffer and Warner (1976) have developed a 



measure of the jeopardy of respondent's privacy 
in the case of a single sensitive attribute. 
Here we shall extend their approach to the case 
of t 2 sensitive attributes: Consider the 2t 
mutually exclusive and collectively exhaustive 
groups into which the population is divided 
depending on the possession or nonpossession of 
different attributes and denote these groups by 
A1A2...A where the 
notation is obvious. Consider, say, the group 

By using the Bayes' theorem in the 
same manner as Leysieffer and Warner (1976) it 

can be shown that a measure of information 
resulting from response v in favor of A1A2At 
against (A1A2At)` is given by 

= P(vIA1A2..At)/ 

(3.1) 

Thus the response v can be regarded as jeopar- 
dizing with respect to the group (and 

not jeopardizing with respect (A,A2...A0°) if 

g(v;A1A2At) > 1 and not jeopardizing with 
respect to either AiA2 At or (AiA2 ...At )c if 

g(v;A,A2At) = 1. Now to get a measure of the 
worst jeopardy of the privacy of an individual in 

group A1A2...A, we define the jeopardy function 
for that group as 

8(A1A2...At) 8(v,A1A2...At). (3.2) 

The jeopardy functions for other groups can be 

defined in an identical manner. 
The parameters of each RR technique should 

be chosen so that the jeopardy function values 
for different groups do not exceed some pre - 

specified upper bounds. We note here that these 

jeopardy function values will depend in general 
on the unknown 8's (in contrast to the case of 

t = 1). Therefore some apriori guesses at the 

values of the 8's will be necessary to compute 
their values. 

3.3 Jeopardy Functions for Competing Techniques: 
Using the definitions (3.1) and (3.2), we shall 
derive the expressions for the jeopardy functions 

associated with the W -, S- and the M- techniques 

for t = 2. Here we shall consider only the 

following special case of practical interest. 

(The general case with t 2 is quite straight- 

forward but algebraically messy and is hence 

omitted.) For the W- technique we take 

= P2 = (say) where > 1/2 without loss of 

generality. For the S- technique we take 

= P2 = Ps (say) and = $2 = (say). For 

the M- technique we take P9 1 - PM 

(say) where > 1/2 without loss of generality. 

Define additional notation as follows: 
= 1 - P, = 1 - 1 - Pm, = 1 - 

and = 1 - - + Then the expres- 
sions for the jeopardy functions (using W, S and 
M to index the jeopardy functions for the W -, S- 

and the M- techniques respectively) are as 

follows. (The details of their derivations are 

given in an unabridged version of this paper 
available with the author.) 
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(i) W-technique: 

(Al A2 ) Qw 

(1- 0¿+812 ) 

(82-812)} 

(ii) S-technique: 

(A1A2)=(Ps4Qsß)2 (1-812)/ 

{Qs (Ps 02 

gs 

{QsY (Ps 

(A1Az)=(Ps4Qsd)(P5+ 

(1-0t2)/ 

[Qs (Ps (1-012-812 

(iii) M-technique: 

(A )=PM ) 

(Ai ) (1- ) QM ( ) 

)/P,Q, 

(Al 

3.4 Equating the Jeopardy Functions for the Com- 
peting Techniques: Our approach here will be to 
first equate the jeopardy functions for the four 
different groups for the competing techniques and 
obtain their equivalent parameter values, i.e., 
their P- values and the -value for the S -tech- 
nique. (Clearly the parameter values yielded by 
the four sets of equations will not in general be 
consistent. Therefore some criterion such as 
guaranteeing the lowest jeopardy level will be 
necessary in order to arrive at a unique para- 
meter value for each technique.) The next step 
in our approach will be to compute for each tech- 
nique a measure of its performance based on these 
parameter values. We have taken the measure of 
performance to be the trace of the variance - 
covariance matrix of the estimator vector. We 
note here that because of the special symmetric 
case that we are considering for each technique, 

no optimization in the sense of Leysieffer and 
Warner (1976) is possible. 

First we equate the gw()'s with the respec- 
tive gs()'s and we obtain that Ps - 1 and 

= 1/2. Next we equate the gw()'s with the 



respective gM()'s and solve the resulting qua- 
dratic equations for PM in terms of gti()'s. We 

give below the condition that must be satisfied 
by gw() in each case for the solution to be 
feasible (i.e., 1/2 P 1) and the correspond- 
ing expression for P,. For notational conve- 
nience we have defined the following quantities: 
k1 = g( A .,A2) /(1- ,2),k2 =gw(AA,) /(1- +e12) 

ks /(1 - e, + e12) and 

= g,(AA`) /(1 - We have 

(A, A, (A,A )/(k10*2-1) 

if 8,(A1A2)=(1-e12)/e*2. (3.3a) 

g ) 

(3.3b) 

if A2 (1- ( 

)=g (A, 1-4/k3 )} 1/21/2 
(3.3c) 

if gw(A1A`)-M(1-0,+01C)/(e12+e12). 

)/(kç 0,2-1) 
(3 .3d) 

if 

It is only fair to point out that one draw- 
back with the M- technique might be that it cannot 
match the W- and S- techniques at low levels of 
jeopardy. Also if unknown to the statistician, 
either = 0 or = 0 or both then at least 
one of the conditions on 0.) in (3.3) is cer- 

tainly violated and there is no hope for matching 
the M- technique with the others in terms of the 
jeopardy values. In practice it is likely that 
012 (the proportion in the population possessing 
both the sensitive attributes Aland A2) will be 
small whereas will be large. Hence it is 

likely that only the condition on g,(AAç) in 

(3.3d) will be violated and it will not be possi- 
ble to guarantee that = g,(AiA`). How- 
ever, this would be of no consequence since 
usually the upper limit on g will be very 
large (even infinity) since is a completely 
innocuous group. 

Now the PM- values given by (3.3a) - (3.3d) 
will in general be unequal. We follow the con- 
vention of guarding the individuals in the most 
sensitive group A1A2, i.e., controlling g(A1A2) 
for each technique. Therefore we take the 
PM -value given by (3.3a). Thus if the condition 
on g.(A1A2) in (3.3a) is satisfied then the 
corresponding PM -value would be feasible and all 
the three techniques would be matched in terms of 

their jeopardy values for the A1A2 group. 

3.5 Numerical Results: Define the trace ineffi- 
ciency of a RR technique as the ratio of the 
trace of the (asymptotic) variance -covariance ma- 

trix of its estimates 91, 02, and 012 to the cor- 

responding quantity for the direct response tech- 
nique when both the techniques use the same 

sample size n. This latter quantity is given by 

(1 - e1) + e2(1 - e2) + - 
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The expressions for the traces of the variance - 
covariance matrices of the UMLE's of (which can 
be regarded as the as;.:,lptotic variance- covariance 
matrices or the RMLE's of 0) for the W- and the 
S- technique are given respectively, in Clickner 
and Iglewicz (1976) anj. Barksdale (1971). 

It can be checked that for the choice 
P = 2P, - 1 and 1/2, the expressions for the 
variance -covariance matrices for the W- and the 
S- techniques are identical and therefore the two 
techniques are equivalent; this extends the 
corresponding result for t = 1 by Leysieffer and 
Warner (1976). Hence we only consider the com- 
parison between the W- and M- techniques. 

The values of were obtained from Table 3 
of Clickner and Iglewicz (1976) where they have 
computed them so that the W- technique attains 

selected levels of trace inefficiency (namely 
1.25, 2.5, 5.0 and 10.0) for selected values of 
0. The corresponding values of PM were computed 
Zrom (3.3a) which guarantees that g,(A1A2) 
gm(A1A2) but does not in general guarantee the 

equality of the jeopardy levels for the other 

groups. Using these P, and PM values the trace 

inefficiencies for the two techniques were com- 

puted. The results of these computations are 
displayed in Table I. The values of PM reported 
are rounded off in the third decimal place. 

An inspection of the results reveals that if 
and are small (which would usually be the 

case for sensitive attributes) and Ps is in the 

range 0.7 - 0.8 (which are the values most fre- 
quently used in practice) then the M- technique 
indeed dominates the W- technique. However, for 

large values of 01 and 02 leading to small values 

of the situation is reversed and the M -tech- 
nique has either very large values for trace 
inefficiency or in a few cases the M- technique 
is even nonexistent. 

An explanation of this phenomenon is as 

follows: First, consider the variation with 

respect to ere. It is easy to check that for 
fixed P, and 012, the PM -value (as given by 

(3.3a)) decreases with which leads to high 
values of the trace inefficiency and in some 

instances even the nonexistence of the M -tech- 
nique. Next consider the variation with respect 

to P1. We note that, in general (i.e., except 

for the case 012 = 1) , PM < 1 even when 
P, = 1 and therefore by a continuity argument we 

would expect the W- technique to dominate the 

M- technique for Ph- values in the neighborhood of 

1. For fixed 0, as decreases, P decreases 
too. But for the intermediate values of Pw, it 

is possible for the M- technique to dominate the 

W- technique. As Ph, decreases even further, PM 

approaches 1/2 and therefore leads to very high 

values of the trace inefficiency for the -tech- 

nique. 
No clear indication of the dependence of the 

trace inefficiency on p12 is evident in this 

table. It is known, however, that for the W- and 

the S- techniques, the variances of el and are 

not affected by the correlation; in fact, the 

corresponding formulae are the same as though 

these attributes were studied independently. 
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.25 .25 .2500 1.0000 .953 .953 1.2478 1.2251 

.837 .837 2.4951 2.0434 

.756 .756 5.0077 3.2044 

.699 .699 10.0397 4.9160 
.40 .05 .0250 .0468 .971 .872 1.2525 1.6838 

.882 .750 2.5027 3.2818 

.803 .675 4.9789 6.2459 

.738 .621 10.0390 12.7284 
.55 .25 .1250 -.0580 .958 .784 1.2509 1.8043 

.848 .633 2.4987 5.2679 

.766 .561 4.9943 21.4589 

.706 .516 10.0363 294.7612 
.75 .05 .0250 -.1325 .978 .784 1.2563 1.8443 

.904 .623 2.5031 6.6806 

.828 .538 4.9948 62.3038 

.760* 10.0363 
.75 .70 .5250 .0000 .959 .676 1.2522 4.1165 

.850 .504 2.4924 7059.5656 

.766* 4.9977 

.705* 9.9647 

Note: The M- technique does not exist for the starred values and the corresponding e vectors. 
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